9.
Use l’Hospital’s Rule to evaluate the limit: \(\lim\limits_{x\to 1} \frac{{x^{2}+x-2} }{{x-1}}\)
10.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 2} \frac{{x^{2}+x-6} }{{x^{2}-7x+10}}
\end{equation*}
11.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \pi} \frac{{\sin\!\left(x\right)} }{{x-\pi }}
\end{equation*}
12.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \pi/4} \frac{{\sin\!\left(x\right)-\cos\!\left(x\right)} }{{\cos\!\left(2x\right)}}
\end{equation*}
13.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0} \frac{{\sin\!\left(5x\right)} }{{x}}
\end{equation*}
14.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0} \frac{{\sin\!\left(2x\right)} }{{x+2}}
\end{equation*}
15.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0} \frac{{\sin\!\left(2x\right)} }{{\sin\!\left(3x\right)}}
\end{equation*}
16.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0} \frac{{\sin\!\left(ax\right)} }{{\sin\!\left(bx\right)}}
\end{equation*}
17.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0^+} \frac{{e^{x}-1} }{{x^{2}}}
\end{equation*}
18.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0^+} \frac{{e^{x}-x-1} }{{x^{2}}}
\end{equation*}
19.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0^+} \frac{{x-\sin\!\left(x\right)} }{{x^{3}-x^{2}}}
\end{equation*}
20.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} \frac{{x^{4}}}{{e^{x}}}
\end{equation*}
21.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} \frac{{\sqrt{x}}}{{e^{x}}}
\end{equation*}
22.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to\infty} \frac{{e^{x}}}{{x^{2}}}
\end{equation*}
23.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} \frac{{e^{x}}}{{\sqrt{x}}}
\end{equation*}
24.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} \frac{{e^{x}}}{{2^{x}}}
\end{equation*}
25.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} \frac{{e^{x}}}{{3^{x}}}
\end{equation*}
26.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 3} \frac{{x^{3}-5x^{2}+3x+9}}{{x^{3}-7x^{2}+15x-9}}
\end{equation*}
27.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to -2} \frac{{x^{3}+4x^{2}+4x}}{{x^{3}+7x^{2}+16x+12}}
\end{equation*}
28.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} \frac{{\ln\!\left(x\right)}}{{x}}
\end{equation*}
29.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} \frac{{\ln\!\left(x^{2}\right)}}{{x}}
\end{equation*}
30.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} \frac{{\ln^{2}\!\left(x\right)}}{{x}}
\end{equation*}
31.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0^+} {x}\cdot {\ln\!\left(x\right)}
\end{equation*}
32.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0^+} {\sqrt{x}}\cdot {\ln\!\left(x\right)}
\end{equation*}
33.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0^+} {x} \cdot {e^{\frac{1}{x}}}
\end{equation*}
34.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} {x^{3}}-{x^{2}}
\end{equation*}
35.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} {\sqrt{x}}-{\ln\!\left(x\right)}
\end{equation*}
36.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to -\infty} {x} \cdot {e^{x}}
\end{equation*}
37.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0^+} {\frac{1}{x^{2}}} \cdot {e^{\frac{-1}{x}}}
\end{equation*}
38.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0^+} ({1+x})^{\frac{1}{x}}
\end{equation*}
39.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0^+} ({2x})^{{x}}
\end{equation*}
40.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0^+} ({\frac{2}{x}})^{{x}}
\end{equation*}
41.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 0^+} ({\sin\!\left(x\right)})^{{x}}
\end{equation*}
Hint: use the Squeeze Theorem.
42.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 1^+} ({1-x})^{{1-x}}
\end{equation*}
43.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} ({x})^{{\frac{1}{x}}}
\end{equation*}
44.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} ({\frac{1}{x}})^{{x}}
\end{equation*}
45.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 1^+} ({\ln\!\left(x\right)})^{{1-x}}
\end{equation*}
46.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} ({1+x})^{{\frac{1}{x}}}
\end{equation*}
47.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} ({1+x^{2}})^{{\frac{1}{x}}}
\end{equation*}
48.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \pi/2} {\tan\!\left(x\right)} {\cos\!\left(x\right)}
\end{equation*}
49.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \pi/2} {\tan\!\left(x\right)} {\sin\!\left(2x\right)}
\end{equation*}
50.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 1^+} {\frac{1}{\ln\!\left(x\right)}} - {\frac{1}{x-1}}
\end{equation*}
51.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 3^+} {\frac{5}{x^{2}-9}} - {\frac{x}{x-3}}
\end{equation*}
52.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} {x} {\tan\!\left(\frac{1}{x}\right)}
\end{equation*}
53.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to \infty} \frac{{\ln^{3}\!\left(x\right)}}{{x}}
\end{equation*}
54.
Use l’Hospital’s Rule to evaluate the limit:
\begin{equation*}
\lim\limits_{x\to 1} \frac{{x^{2}+x-2}}{{\ln\!\left(x\right)} }
\end{equation*}