7.
Let \(\vec u = \la 3,2,-2\ra\text{,}\) \(\vec v = \la 0,1,5\ra\text{.}\)
\(\vec u\times\vec v=\)
Check this is orthogonal to both \(\vec u\) and \(\vec v\text{.}\)
8.
Let \(\vec u = \la 5, -4, 3\ra\text{,}\) \(\vec v = \la 2, -5, 1\ra\text{.}\)
\(\vec u\times\vec v=\)
Check this is orthogonal to both \(\vec u\) and \(\vec v\text{.}\)
9.
Let \(\vec u = \la 4, -5, -5\ra\text{,}\) \(\vec v = \la 3, 3, 4\ra\text{.}\)
\(\vec u\times\vec v=\)
Check this is orthogonal to both \(\vec u\) and \(\vec v\text{.}\)
10.
Let \(\vec u = \la -4, 7, -10\ra\text{,}\) \(\vec v = \la 4, 4, 1\ra\text{.}\)
\(\vec u\times\vec v=\)
Check this is orthogonal to both \(\vec u\) and \(\vec v\text{.}\)
11.
Let \(\vec u = \la 1, 0, 1\ra\text{,}\) \(\vec v = \la 5, 0, 7\ra\text{.}\)
\(\vec u\times\vec v=\)
Check this is orthogonal to both \(\vec u\) and \(\vec v\text{.}\)
12.
Let \(\vec u = \la 1, 5, -4\ra\text{,}\) \(\vec v = \la -2, -10, 8\ra\text{.}\)
\(\vec u\times\vec v=\)
Check this is orthogonal to both \(\vec u\) and \(\vec v\text{.}\)
13.
\(\vec u = \langle a,b,0\rangle\text{,}\) \(\vec v = \langle c,d,0\rangle\)
14.
Let \(\vec u = \hat\imath\text{,}\) \(\vec v = \hat\jmath\text{.}\)
\(\vec u\times\vec v=\)
Check this is orthogonal to both \(\vec u\) and \(\vec v\text{.}\)
15.
Let \(\vec u = \hat\imath\text{,}\) \(\vec v = \hat{k}\text{.}\)
\(\vec u\times\vec v=\)
Check this is orthogonal to both \(\vec u\) and \(\vec v\text{.}\)
16.
Let \(\vec u = \hat\jmath\text{,}\) \(\vec v = \hat{k}\text{.}\)
\(\vec u\times\vec v=\)
Check this is orthogonal to both \(\vec u\) and \(\vec v\text{.}\)